Course Syllabus for SIADS 515: Efficient Data Processing

Course Overview and Prerequisites
This course will introduce students to the basics of the linux command-line interface, debugging concepts, basic algorithmic principles such as memoization, recursion, caching, and generators, as well as efficiency and code profiling.

There are no prerequisites.

Instructor and Course Assistants
Instructor: Chris Teplovs, Ph.D. Lecturer IV in Information and Research Investigator, School of Information

Course Assistant: Kris Steinhoff, Intermittent Lecturer in Information, School of Information and Staff Data Engineer, Toyota Research Institute

Chris Teplovs designed and developed this course with the assistance of McCoy Doherty and Kris Steinhoff.

Communication Expectations
If you have questions about course content (e.g. lecture videos, quizzes, or assignments), please use the class Slack channel to discuss with classmates and the instructional team. Instructor and course assistant response time to Slack messages will be within 24 hours.

Personal communication that may involve sensitive information can be emailed directly to the instructional team at siads-515-fall-2021-instructors@umich.edu. Instructor and course assistant response time to email messages will be within 24 hours.

Required Weekly Textbooks and Readings

- See the Library’s access instructions for the readings hosted by O’Reilly Online.

Week 1: Linux Command-Line Interface

The Linux Command Line by William Shotts (Chapters 1-4 only)

Week 2: Iterators, Generators, Decorators

Iterators and Generators

Effective Python: 90 Specific Ways to Write Better Python by Brett Slatkin (Chapter 4. Comprehensions and Generators)

Decorators

Week 3: Debugging

The Visual Python Debugger for Jupyter Notebooks You’ve Always Wanted by David Taieb
Week 4: Complexity and Optimization

A Common-Sense Guide to Data Structures and Algorithms by Jay Wengrow (Chapter 3)

Python Data Science Handbook by Jake VanderPlas (Chapter 1, section 7: Profiling and Timing Code)

Learning Outcomes
Familiarity with the linux command-line interface

Understanding generators, memoization and caching

Debugging

Efficient data structures

Theory and measurement of complexity

Course Schedule

- This course begins on **Monday September 27** and ends on **Sunday October 24, 2021**.
- Weekly assignments will be due on **Sunday at 11:59 pm** (Ann Arbor, Michigan time- Eastern Daylight Time - EDT, UTC -4).

In **Week 1**, you will be introduced to the linux command line interface (CLI) and you will learn basic data manipulation techniques without having to use Python.

In **Week 2**, you will learn about iterators, generators, decorators, caching, and memoization -- all useful techniques to improve the writing and execution of your code.

In **Week 3**, we will review some basic data structures, learn to use advanced ones to help with data manipulation, and debugging techniques for data science.

In **Week 4**, we will discuss algorithmic complexity and look at how we can use profiling to improve the efficiency of our code.

Weekly Office Hours via Zoom (Ann Arbor, Michigan time):
Your instructor will hold weekly, synchronous office hours using the video-conferencing tool, Zoom. The schedule of office hours can be found by clicking on the **Live Events** link in the left-hand navigation menu. Additionally, all office hours will be recorded and archived so that you can retrieve them at a later date. Archived office hours can be found in respective modules of the course.

Grading

<table>
<thead>
<tr>
<th>Course Item</th>
<th>Percentage of Final Grade</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1 Assignment</td>
<td>25%</td>
<td>Sunday, October 3, 2021</td>
</tr>
</tbody>
</table>
Week 2 Assignment | 25% | Sunday, October 10, 2021
---|---|---
Week 3 Assignment | 25% | Sunday, October 17, 2021
Week 4 Assignment | 25% | Sunday, October 24, 2021
Total | 100% |

Note: All assignments are required to earn credit for this course.

Letter Grades, Course Grades, and Late Submission Policy

We realize that the occasional crisis might mess up your schedule enough to require a bit of extra time in completing a course assignment. Thus, we have instituted the following late policy that gives you a limited number of flexible “late day” credits.

You have three (3) free late days to use during SIADS 515. One late day equals exactly one 24-hour period after the due date of the assignment (including weekends). No fractional late days: they are all or nothing. Once you have used up your late days, 25% penalty for each subsequent 24-hour period after the deadline that an assignment is late. For example, if the due date is 11:59pm Sunday, with no late days left, penalties would be:

Before 11:59pm Monday: 25% deduction
Before 11:59pm Tuesday: 50% deduction
Before 11:59pm Wednesday: 75% deduction
After 11:59pm Thursday: 100% deduction

You don't need to explain or get permission to use late days, and we will track them for you. Note that resubmissions after the deadline will be counted as late submissions.

The grading scale for this course is as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>95%</td>
</tr>
<tr>
<td>A-</td>
<td>90%</td>
</tr>
<tr>
<td>B+</td>
<td>87%</td>
</tr>
<tr>
<td>B</td>
<td>83%</td>
</tr>
<tr>
<td>B-</td>
<td>80%</td>
</tr>
<tr>
<td>C+</td>
<td>77%</td>
</tr>
<tr>
<td>C</td>
<td>73%</td>
</tr>
<tr>
<td>C-</td>
<td>70%</td>
</tr>
<tr>
<td>D+</td>
<td>67%</td>
</tr>
<tr>
<td>D</td>
<td>63%</td>
</tr>
</tbody>
</table>
Academic Integrity/Code of Conduct
Refer to the [Academic and Professional Integrity](#) section of the UMSI Student Handbook. (access to Student Orientation course required).

Accommodations
Refer to the [Accommodations for Students with Disabilities](#) section of the UMSI Student Handbook.

Use the Student Application Form [in Accommodate](#) to begin the process of working with the University’s Office of Services for Students with Disabilities.

Accessibility
Refer to the [Screen reader configuration for Jupyter Notebook Content](#) document to learn accessibility tips for Jupyter Notebooks.

Help Desk(s): How to get help
- Degree program questions or general help - umsimadshelp@umich.edu
- Coursera’s Technical Support (24/7) - https://learner.coursera.help/

Library Access
Refer to the [U-M Library’s information sheet](#) on accessing library resources from off-campus. For more information regarding library support services, please refer to the [U-M Library Resources](#) section of the UMSI Student Handbook (access to the Student Orientation course required).

Student Mental Health
Refer to the University’s [Resources for Stress and Mental Health website](#) for a listing of resources for students.

Student Services
Refer to the [Introduction to UMSI Student Life](#) section of the UMSI Student Handbook (access to the Student Orientation course required).

Technology Tips
- Recommended Technology
- This program requires Jupyter Notebook for completion of problem sets and Adobe or other PDF viewer for reading articles.
- Working Offline
- While the Coursera platform has an integrated Jupyter Notebook system, you can work offline on your own computer by installing Python 3.5+ and the Jupyter software packages. For more details, consult the [Jupyter Notebook FAQ](#).