
Course Syllabus for SIADS 543: Unsupervised Learning

Fall 2021

How to Get Help

If you have questions concerning the degree program, encounter a technical issue with
Coursera, or issues using Slack, please submit a report to the ticketing system at
umsimadshelp@umich.edu.

If you have an issue specific to the Coursera environment, you can also begin a live chat
session with Coursera Technical Support (24/7) or view Coursera troubleshooting guides. (you
may be asked to log in to your Coursera account).

For questions regarding course content, refer to the Communications Expectations section
below.

Course Overview

Unsupervised learning algorithms are methods for transforming and finding structure in datasets
without the benefit of labeled examples to guide them. Students will learn how to correctly apply,
interpret results, and iteratively refine and tune unsupervised machine learning models to solve
a diverse set of problems on real-world datasets. Application is emphasized over theoretical
content. The unsupervised learning course is an essential part of the core MADS machine
learning series: its concepts, algorithms, and evaluation methods are used heavily throughout
the following machine learning courses that include: deep learning and machine learning
pipelines.

Prerequisites

Knowledge of key concepts and methods covered in the SIADS 542 Supervised Learning
course, as well as familiarity with the scikit-learn, numpy, pandas, and scipy libraries.

Instructor and Course Assistance

Instructor: (kevynct@umich.edu)Kevyn Collins-Thompson
Graduate Student Instructors: Yutong Xie (yutxie@umich.edu), Ivy Wang (iwango@umich.edu)
Instructional Assistant: Cameron Grams (grams@umich.edu)

Course Communication Expectations

Slack is the preferred communication tool for this course. If you have questions about course
content (e.g. lecture videos or assignments), please make sure to use Slack. Instructor and
course assistant response time to Slack messages will aim to be within 24 hours,
Monday-Friday.

mailto:kevynct@umich.edu
mailto:umsimadshelp@umich.edu
https://learner.coursera.help/hc/en-us/articles/360024928831-Chat-with-us
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Please try to monitor the Slack channels for the course regularly.

Personal communication that may involve sensitive information may be emailed directly to the
instructor or course assistant. If you email the instructor or course assistant, please include
SIADS543 in the email subject. Instructor and course assistant response time to email
messages will aim to be within 24 hours.

Office Hours are held on:

● Mondays at 12pm with Kevyn Collins-Thompson
● Thursdays at 8am with Ivy Wang
● Fridays at 4pm with Yutong Xie

An additional Enrichment Lecture may be held on some Mondays from 1-2pm EDT using the
same Live Events Zoom link as Kevyn’s preceding office hour (time permitting in Kevyn’s
schedule).

Office hour sessions and Enrichment Lectures will be recorded for the benefit of students who
are unable to join at these times. Password to join any Office hours is 543

If you would like to meet with one-on-one, Click here for Kevyn’sKevyn Collins-Thompson
appointment calendar link.  Time slots are labeled SI 542/543 ONLY and are for 20
minutes from 9-10am on Tuesdays.

Technology Requirements

The course programming will be based on Jupyter notebooks and Python 3.x.

Required Textbook

This course will use the following textbook as a reference and source of examples: Introduction
to Machine Learning with Python, by Andreas C. Müller and Sarah Guido (O'Reilly Media)
This text is available free online via the University of Michigan Library:

1. On the Welcome! screen, choose "Select your institution" to open the menu and select
the first option "Not listed? Click here."

2. In the Academic email box, enter your U-M email address (in the format:
uniqname@umich.edu).

Users can also create an individual account using your U-M email, but don't have to. There is a
more detailed description of access options here. (Unfortunately, to add to this there have been
some users recently who have reported error messages when trying to login to this database.
My general advice for this problem is to try using an incognito browser window and follow the
steps above.)

This text is also available for purchase on the O'Reilly website.
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mailto:kevynct@umich.edu
https://calendar.google.com/calendar/u/0/selfsched?sstoken=UU9DN01mRjJjSjZjfGRlZmF1bHR8OTk1ZGZlYjZlMWY5NGFiZDA2OTkxNTAxNWJlMDFiMGQ
https://proxy.lib.umich.edu/login?url=https://www.safaribooksonline.com/library/view/-/9781449369880/?ar
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Other Textbooks and Resources (Optional)

From time to time I may refer to examples or other content from the classic textbook The
Elements of Statistical Learning (Second Ed.) by Trevor Hastie, Robert Tibshirani, and
Jerome Friedman, published by Springer.

The entire textbook is free and available for online downloading.

For a very useful mathematical background, see the companion webpage to the book
"Mathematics for Machine Learning”'. Copyright 2020 by Marc Peter Deisenroth, A. Aldo Faisal,
and Cheng Soon Ong. Published by Cambridge University Press.

Learning Outcomes

Here's a summary of some key learning objectives we have (1) for the course overall, and (2)
broken down by week.

Course-wide objectives

● Correctly apply and interpret results from clustering methods in scikit-learn, including
k-means, agglomerative clustering, hierarchical clustering, and DBSCAN.

● Understand the use of topic modeling (Latent Dirichlet Allocation and Non-Negative
Matrix Factorization forms) and best practices for its application.

● Correctly apply and interpret results from manifold learning methods, including
multidimensional scaling (MDS) and t-SNE.

● Understand how to evaluate clustering results using a variety of metrics.
● Understand the tradeoffs and assumptions inherent in different clustering techniques.
● Understand how unsupervised learning can be used to improve supervised prediction.
● Perform density estimation using a kernel, with a single random variable.
● Interpret a biplot result from principal components analysis (PCA).
● Build awareness of the basic mechanism and use of word embeddings (in preparation

for later coverage in deep learning).
● Build awareness of the EM algorithm: what it does, how and why it’s used, and how it

relates to clustering.
● Build awareness of other advanced methods like kernel PCA and spectral clustering.

Week 1

● Apply PCA to a dataset: create and interpret biplot.
● Understand the Singular Value Decomposition.
● Apply MDS and t-SNE to a dataset, interpret results.
● Learn how normalization should be applied to input, and how key parameters can affect

output.

https://web.stanford.edu/~hastie/ElemStatLearn/
https://mml-book.github.io/


● Perform density estimation on a single variable using different kernel
choices/parameters.

Week 2

● Apply k-means clustering to a given dataset.
● Learn about issues with applying some clustering methods in practice, such as local

minima and restarts.
● Create a dendrogram from hierarchical data to answer questions about the dataset.
● Use DBSCAN to find groups and detect outliers.
● Compare different clusters in terms of selected quality metrics.

Week 3

● Learn about the Expectation-Maximization (EM) algorithm.
● Apply LDA and NMF topic modelling to a text dataset, compare results.
● Learn about input text representations (e.g. tf.idf) and how this can affect results.
● Understand Latent Semantic Indexing and how it can be used for semantics-based text

matching.
● Use of word2vec embedding for text similarity (compared to simple word overlap).

Week 4

● Apply unsupervised learning techniques to a real-world dataset, including the methods
introduced this week.

● Use unsupervised methods to find features for a supervised learning problem.
● Learn how unsupervised learning can be used for data imputation.
● Learn about related methods: self-supervised learning and semi-supervised learning.

Schedule

Please note: in order to provide a self-contained module for some topics (e.g. where it's easy to
move back and forth for reference if needed), a few videos turned out to be significantly longer
than average. Also, in contrast to supervised learning, the unsupervised learning course covers
more material in the first week than the supervised learning course did, so please plan your
schedule accordingly.  Unlike in supervised learning where the first assignment was shorter and
given less weight, all four assignments in unsupervised learning have *equal* weight.

Week 1: You'll be introduced to basic unsupervised learning methods that focus on
transformation of data: dimensionality reduction, manifold learning, and density estimation, with
analysis of realistic datasets, implemented using the scikit-learn library. For this week's
assignment you'll apply Principal Components Analysis to gain insight into a large real-world



dataset, use manifold learning methods such as t-SNE to visualize complex structure, and use
kernel density estimation to estimate probabilities of conditional events.

Week 2: This week will focus entirely on clustering - another critical and widely-used
unsupervised learning method. You'll learn about the most important families of clustering
algorithms: hierarchical methods (agglomerative bottom-up, divisive top-down), partitioning
methods (k-means, k-medoids) and density-based methods (DBSCAN). You'll also gain
awareness of more advanced methods such as spectral clustering, and how to evaluate cluster
quality. This week's assignment will have you apply a variety of these clustering approaches to
realistic datasets using scikit-learn's clustering capabilities.

Week 3: Our theme this week is estimating latent variables, another important area of
unsupervised learning, especially for text-based applications. We'll cover the EM algorithm for
estimating latent variables and its connection with k-means clustering. Topic modeling is another
form of latent variable estimation and you'll learn about two different methods for this: Latent
Dirichlet Allocation (LDA) and Latent Semantic Indexing. We'll also survey word embeddings:
learning how to represent words with vectors in semantically useful ways. This week's
assignment will include problems that have you apply EM to a new scenario, analyze topic
structure in a large document collection, and apply word embeddings to an NLP-related task.

Week 4: In the final week of this course, we'll see how unsupervised methods can be integrated
with supervised learning methods to improve prediction performance. To do this, we’ll look at
various special topics, including data imputation (dealing with missing data) and extensions of
unsupervised learning that are at the cutting edge of today's technology: semi-supervised
learning and self-supervised learning. This week's assignment will be a synthesis project in
which you apply unsupervised methods and supervised methods to a complex real-world
dataset.

Assignments

Week 1: Apply PCA to a dataset: create and interpret biplot.  Apply MDS and t-SNE to a
dataset, interpret results. Learn how normalization should be applied to input, and how key
parameters can affect output. Perform density estimation on a single variable.

Week 2: Apply k-means clustering to a given dataset. Learn about local minima and restarts.
Create a dendrogram from hierarchical data to answer questions about the dataset. Compare
different clusters in terms of selected quality metrics.

Week 3: Apply LDA and NMF topic modelling to a text dataset, compare results. Learn about
how the input text representation (e.g. tf.idf) can affect results.  Use of word2vec embedding for
text similarity (compared to simple word overlap).



Week 4: Apply various unsupervised learning techniques covered as special topics, to
real-world data, including using supervised methods to help solve specific unsupervised
learning problems like data imputation.

Quizzes

Each week will also contain a short quiz to test your knowledge of material in the lectures and
readings.

Grading and Course Checklist

I anticipate no major changes to this course grading scheme. However, as the course
progresses, I reserve the right to offer additional bonus assessments or make minor
adjustments/fixes as required, for any evaluation method in this course.  If necessary, any such
changes will always be done in a way that maximizes a student's grade across options.

You must complete all assignments and quizzes to get credit for this course.

Course Assignment Percentage of Final Grade Passing Threshold

Week 1 Quiz 5% 80%

Week 1 Jupyter Notebook Assignment 20%

Week 2 Quiz 5% 80%

Week 2 Jupyter Notebook Assignment 20%

Week 3 Quiz 5% 80%

Week 3 Jupyter Notebook Assignment 20%

Week 4 Quiz 5% 80%

Week 4 Jupyter Notebook Assignment 20%

Total 100%



Late Submission Policy

Important! Please read and understand this section, and if anything is unclear, it is your
responsibility to contact the instructors so that you understand the policy. We realize that,
now more than ever,  the occasional crisis might mess up your schedule enough to require a bit
of extra time in completing a course assignment. Thus, we have instituted the following flexible
late policy that gives you a limited number of flexible "late day" credits.

You have a total of two (2) free late days to “spend” during the course for quizzes and
programming assignments, respectively. One late day equals exactly one 24-hour period
after the due date of the assignment (including weekends). No fractional late days: they are all
or nothing.

As an example, suppose you had two course late days left. Submitting one specific assessment
(quiz or programming assignment) any time within 24hrs of the original due date counts as
using the first late day for that assessment. Beyond that time, submitting any time within the
next 24h counts as using the 2nd late day for that assessment. After that, each additional 24h
period accrues a 15% per day penalty as follows: Once you have used up your late days, there
is a 15% penalty for each subsequent 24-hour period after the deadline that an assignment is
late. For example, if the due date is 11:59pm Monday, and you have *no* late days left,
penalties would be:
Submit before 11:59pm Tuesday: 15% deduction
Submit before 11:59pm Wednesday: 30% deduction
Submit before 11:59pm Thursday: 45% deduction
Submit after 11:59pm Thursday: 60% deduction

You don't need to explain or get permission to use late days: we will track them for you. We will
allocate any late days you have used at the end of the course, after all quizzes and assignments
are submitted, so that we can do the allocation in a way that maximizes your final grade. Note
that resubmissions after the deadline will be counted as late submissions.

This flexible system is difficult/impossible to implement in Coursera, so basically you may see
temporary penalties in the Coursera gradebook but at the end of the course we will add back
the late day credits to your grades.  We wait until the end to do this so that we can see all your
submitted assessments and allocate the late days in a way that maximizes your final grade.

Please note:  Submitting your work on time is very important in this course.  The instructional
team may periodically reach out to you and ask you about your progress; if you fall behind it
may be difficult to catch up, and you will be at risk for not succeeding in the course.

Also note: All assignments for this course are due on Mondays at 11:59 PM, except for the final
week’s assignments, which is due on Sunday, October 24 at 11:59pm (the final day of the



course). We will give you a 24 hour grace period for this assignment before late penalties kick
in.

Letter Grades

The grading scale for this course will be as follows:

A+ 97%

A 93%

A- 90%

B+ 87%

B 83%

B- 80%

C+ 77%

C 73%

C- 70%

D+ 67%

D 63%

D- 60%

F 0%

Program-wide Information

Help Desk(s): How to get Help

Need help? You may reach out to UMSI or Coursera depending on the type of question you
have.

● Degree program questions or general help - umsimadshelp@umich.edu
● Coursera’s Technical Support (24/7) - https://learner.coursera.help/

Academic Integrity/Code of Conduct

mailto:umsimadshelp@umich.edu
https://learner.coursera.help/


Refer to the Academic and Professional Integrity section of the UMSI Student Handbook.
(access to Student Orientation course required).

Accommodations

Refer to the Accommodations for Students with Disabilities section of the UMSI Student
Handbook.

Use the  Student Application Form in Accommodate to begin the process of working with the
University’s Office of Services for Students with Disabilities.

Accessibility

Refer to the Screen reader configuration for Jupyter Notebook Content document to learn
accessibility tips for Jupyter Notebooks.

Library Access

Refer to the U-M Library’s information sheet on accessing library resources from off-campus.
For more information regarding library support services, please refer to the U-M Library
Resources section of the UMSI Student Handbook (access to the Student Orientation course
required).

Student Mental Health

Refer to the University’s Resources for Stress and Mental Health website for a listing of
resources for students.

Student Services

Refer to the Introduction to UMSI Student Life section of the UMSI Student Handbook (access
to the Student Orientation course required).

Technology Tips

We will be using Slack, Zoom, Google Docs, and Google Sheets to facilitate communication.
Your own work on the project will be done in Jupyter.

We have created a Jupyter environment for you that is functionally equivalent to SIADS 516,
which is a superset of the base MADS environment. You can access that environment via the
"ungraded lab assignment" in Coursera.  You can use that environment or choose to use any of
the environments from courses you have already completed.  Alternatively, you can use your
own locally installed environment.  Another possibility is to use Google Colaboratory, which may
facilitate collaboration.

https://www.coursera.org/learn/siads-orientation/supplement/CEdb0/master-of-applied-data-science-program-student-handbook
https://docs.google.com/document/d/1YEOcpdONdme5kmpNEnZpdbJeVFhEIw1pS0wq16QdH1I/edit#heading=h.k0qrvex9x6d1
https://umich-accommodate.symplicity.com/
https://docs.google.com/document/d/1ct4BShNTYVU2J_oYeuTTsODSAFlEhtODXMlfc4-t5PM/edit#heading=h.t003rxazhbx3
https://www.lib.umich.edu/computing-library/access-outside-library
https://www.coursera.org/learn/siads-orientation/supplement/pED9d/u-m-library-resources
https://www.coursera.org/learn/siads-orientation/supplement/pED9d/u-m-library-resources
https://www.uhs.umich.edu/stressresources#services
https://www.coursera.org/learn/siads-orientation/supplement/S6R1u/introduction-to-umsi-student-life-and-academic-affairs
https://colab.research.google.com/notebooks/intro.ipynb


Working Offline

While the Coursera platform has an integrated Jupyter Notebook system, you can work offline
on your own computer by installing Python 3.5+ and the Jupyter software packages. For more
details, consult the Jupyter Notebook FAQ.

https://www.coursera.org/learn/python-machine-learning/resources/bANLa

